8 research outputs found

    Intracardiac Ultrasound Guided Systems for Transcatheter Cardiac Interventions

    Get PDF
    Transcatheter cardiac interventions are characterized by their percutaneous nature, increased patient safety, and low hospitalization times. Transcatheter procedures involve two major stages: navigation towards the target site and the positioning of tools to deliver the therapy, during which the interventionalists face the challenge of visualizing the anatomy and the relative position of the tools such as a guidewire. Fluoroscopic and transesophageal ultrasound (TEE) imaging are the most used techniques in cardiac procedures; however, they possess the disadvantage of radiation exposure and suboptimal imaging. This work explores the potential of intracardiac ultrasound (ICE) within an image guidance system (IGS) to facilitate the two stages of cardiac interventions. First, a novel 2.5D side-firing, conical Foresight ICE probe (Conavi Medical Inc., Toronto) is characterized, calibrated, and tracked using an electromagnetic sensor. The results indicate an acceptable tracking accuracy within some limitations. Next, an IGS is developed for navigating the vessels without fluoroscopy. A forward-looking, tracked ICE probe is used to reconstruct the vessel on a phantom which mimics the ultrasound imaging of an animal vena cava. Deep learning methods are employed to segment the complex vessel geometry from ICE imaging for the first time. The ICE-reconstructed vessel showed a clinically acceptable range of accuracy. Finally, a guidance system was developed to facilitate the positioning of tools during a tricuspid valve repair. The designed system potentially facilitates the positioning of the TriClip at the coaptation gap by pre-mapping the corresponding site of regurgitation in 3D tracking space

    CHARACTERIZATION & CALIBRATION OF FORESIGHT ICE

    Get PDF

    Towards fluoro-free interventions: Using radial intracardiac ultrasound for vascular navigation

    Get PDF
    Transcatheter cardio-vascular interventions have the advantage of patient safety,reduced surgery time, and minimal trauma to the patient\u27s body. Transcathetherinterventions, which are performed percutaneously, suffer from the lack of direct line-of-sight with the surgical tools and the patient anatomy. Therefore, such interventionalprocedures rely heavily on image guidance for navigating towards and deliveringtherapy at the target site. Vascular navigation via the inferior vena cava (IVC), from thegroin to the heart, is an imperative part of most transcatheter cardiovascularinterventions such as valve repair surgeries and ablation therapy. Traditionally, the IVCis navigated using fluoroscopic techniques such as angiography or CT venography.These X-ray based techniques can have detrimental effects on the patient as well asthe surgical team, causing increased radiation exposure, increased risk of cancer, fetaldefects, eye cataracts. The use of heavy lead apron has also been reported to causeback pain and spine issues thus leading to interventionalist’s disc disease. We proposethe use of a catheter-based ultrasound augmented with electromagnetic (EM) trackingtechnology to generate a vascular roadmap in real-time and perform navigation withoutharmful radiation. In this pilot study, we use intracardiac echocardiography (ICE) and tracking technology to reconstruct a vessel from a phantom in a 3D virtual space. Thispaper presents a pilot phantom study on ICE-based vessel reconstruction anddemonstrates how the proposed ultrasound-based navigation will appear in a virtualspace, by navigating a tracked guidewire within the vessels in the phantom without anyradiation-based imaging. The geometric accuracy is assessed using a CT scan of thephantom, with a Dice coefficient of 0.79. The average distance between the surface ofthe two models comes out to be 1.7 ± 1.12mm

    3D Localization of Vena Contracta using Doppler ICE Imaging in Tricuspid Valve Interventions

    Get PDF
    PURPOSE: Tricuspid valve (TV) interventions face the challenge of imaging the anatomy and tools because of the ‘TEE-unfriendly’ nature of the TV. In edge-to-edge TV repair, a core step is to position the clip perpendicular to the coaptation gap. In this study, we provide a semi-automated method to localize the VC from Doppler intracardiac echo (ICE) imaging in a tracked 3D space, thus providing a pre-mapped location of the coaptation gap to assist device positioning. METHODS: A magnetically tracked ICE probe with Doppler imaging capabilities is employed in this study for imaging three patient-specific TVs placed in a pulsatile heart phantom. For each of the valves, the ICE probe is positioned to image the maximum regurgitant flow for five cardiac cycles. An algorithm then extracts the regurgitation imaging and computes the exact location of the vena contracta on the image. RESULTS: Across the three pathological, patient-specific valves, the average distance error between the detected VC and the ground truth model is [Formula: see text] mm. For each of the valves, one case represented the outlier where the algorithm misidentified the vena contracta to be near the annulus. In such cases, it is recommended to retake the five-second imaging data. CONCLUSION: This study presented a method for ultrasound-based localization of vena contracta in 3D space. Mapping such anatomical landmarks has the potential to assist with device positioning and to simplify tricuspid valve interventions by providing more contextual information to the interventionalists, thus enhancing their spatial awareness. Additionally, ICE can be used to provide live US and Doppler imaging of the complex TV anatomy throughout the procedure

    Ultrasound calibration for unique 2.5D conical images

    Get PDF
    © 2019 SPIE. Intracardiac echocardiography (ICE) systems are routinely used in percutaneous cardiac interventions for interventional and surgical navigation. Conavi\u27s Foresight ICE is a new ICE system that uses a mechanically rotating transducer to generate a 2D conical surface image in 3D space, in contrast to the more typical side-firing phased array. When combined with magnetic tracking technology, this unique imaging geometry poses new calibration challenges and opportunities. Existing ultrasound calibration methods are designed for 2D planar images and cannot be trivially applied to unique 2:5D conical surface images provided by the Foresight ICE system. In this work a spatial and temporal calibration technique applied to the unique case of conical ultrasound image data is described and validated. Precision of calibration parameters is used to quantify the validation of our calibration method and the overall system accuracy is validated using point source and sphere centroid localization. We re-port a maximum error of 5:07mm for point reconstruction accuracy and 1:94mm for sphere centroid localization accuracy

    A simple, realistic walled phantom for intravascular and intracardiac applications

    Get PDF
    © 2020, The Author(s). Purpose: This work aims to develop a simple, anatomically and haptically realistic vascular phantom, compatible with intravascular and intracardiac ultrasound. The low-cost, dual-layered phantom bridges the gap between traditional wall-only and wall-less phantoms by showing both the vessel wall and surrounding tissue in ultrasound imaging. This phantom can better assist clinical tool training, testing of intravascular devices, blood flow studies, and validation of algorithms for intravascular and intracardiac surgical systems. Methods: Polyvinyl alcohol cryogel (PVA-c) incorporating a scattering agent was used to obtain vessel and tissue-mimicking materials. Our specific design targeted the inferior vena cava and renal bifurcations which were modelled using CAD software. A custom mould and container were 3D-printed for shaping the desired vessel wall. Three phantoms were prepared by varying both the concentrations of scattering agent as well as the number of freeze–thaw cycles to which the phantom layers were subjected during the manufacturing process. Each phantom was evaluated using ultrasound imaging using the Foresightℱ ICE probe. Geometrical validation was provided by comparing CAD design to a CT scan of the phantom. Results: The desired vascular phantom was constructed using 2.5% and 0.05% scattering agent concentration in the vessel and tissue-mimicking layers, respectively. Imaging of the three phantoms showed that increasing the number of freeze–thaw cycles did not significantly enhance the image contrast. Comparison of the US images with their CT equivalents resulted in an average error of 0.9mm for the lumen diameter. Conclusion: The phantom is anatomically realistic when imaged with intracardiac ultrasound and provides a smooth lumen for the ultrasound probe and catheter to manoeuvre. The vascular phantom enables validation of intravascular and intracardiac image guidance systems. The simple construction technique also provides a workflow for designing complex, multi-layered arterial phantoms

    Towards electromagnetic tracking of J-tip guidewire: Precision assessment of sensors during bending tests

    No full text
    © 2020 SPIE. Electromagnetic image guidance systems have emerged as more secure methods to improve the performance of several catheter-based minimally invasive surgical procedures. Small sensors are incorporated within catheters and guidewires in order to track and guide in real-time their position and orientation with a reduced intra- procedural radiation exposure and contrast agent injections. One of the major limits of these systems is related to the unsuitable sensorization strategy for the J-tip guidewires, due to the structural constraints of the sensor coils available on the market. In this work we present preliminary results on a sensors bending test in static conditions to assess whether and when the precision of the sensor remains unchanged and/or deteriorates. In the worst case, the highest standard deviation is less than 0:10 mm

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    No full text
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore